Logo screen


Unsere Literaturzitate sollen nur einige Beispiele für die wichtigsten Anwendungen der aktuellen Porphyrin-chemie sein. Sie erhebt nicht den Anspruch auf Vollständigkeit und Relevanz bei den einzelnen angegebenen Anwendungen. Wir möchten mit diesem Service unserem Kunden nur ein wenig helfen in das spannende Gebiet der Erforschung und Anwendung von Porphyrine tiefer einzusteigen:

1. Medizinische Anwendungen
1.1. Photodynamische Therapie / Diagnostik (PDT)
1.1.1. Bonett R., Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy., Chemical Society Reviews, , 1995, 19-33
1.1.2. Jori G., Tumor photosensitizers: approaches to enhance the selectivity and efficiecy of photodynamic therapy., J. Photochem. Photobiol. B: Biol., 36, 1996, 87-93
1.1.3. Hombrecher H. K., Schell C., Thiem J., Synthesis and investigation of a galactopyranosyl-cholesteryloxy substituted porphyrin., Bioorg. Med. Chem Lett., 6, 1996, 1199-1202
1.1.4. Sternberg E. D., Dolphin D., Porphyrin- based photosensitizers for use in photodynamic therapy., Tetrahedron, 54, 1998, 4151-4202
1.1.5. Tita, S.P.S and Perussi, J.R., The effect of porphyrins on normal and transformed mouse cell lines in the presence of visible light., Braz. J. Med. Biol. Res., 34, 2001, 1331-1336
1.1.6. Konan Y. N., Cerny R., Favet J., Berton M., Gurny R. and Allémann E., Preparation and characterization of sterile sub-200 nm meso-Tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy., Eur. J. Pharm. Biopharm. , 55, 2003, 115-124
1.1.7. Konopka K. and Goslinski T., Photodynamic Therapy in Dentistry., J. Dent. Res., 86, 2007, 694-707
1.1.8. To Y.F., Sun R.W., Chen Y., Chan V.S., Yu W.Y., Tam P.K., Che C.M. and Lin C.L., Gold(III) porphyrin complex is more potent than cisplatin in inhibiting growth of nasopharyngeal carcinoma in vitro and in vivo., Int. J. Cancer, 124, 2009, 1971-1979
1.1.9. Young-Hwan Jeong, Hee-Jae Yoon and Woo-Dong Jang, Dendrimer porphyrin-based self-assembled nano-devices for biomedical applications., Polym. J., 44, 2012, 512-521
1.1.10. Matsumoto J., Shiragami T., Hirakawa K. and Yasuda M., Water-Solubilization of P(V) and Sb(V) Porphyrins and Their Photobiological Application., International Journal of Photoenergy, , 2015, 1-12
1.1.11. Huang H., Song W., Rieffel J. and Lovell J. F., Emerging applications of porphyrins in photomedicine., FRPHY, Vol 3, 2015, 1-15
1.2. Weitere medizinische Anwendungen (antibiotische-, antivirale Therapie usw.
1.2.1. Maisch T., Bosl C., Szeimies R.-M., Lehn N. and Abels C., Photodynamic Effects of Novel XF Porphyrin Derivatieves on Prokaryotic and Eukaryotic Cells, Antimicrob. Agents, Chemother., 49, 2005, 1542-1552
1.2.2. Feese E. and Ghiladi R. A., Highly efficient in vitro photodynamic inactivation of Mycobacterium smegmatis., J Antimicrob Chemother., 64, 2009, 782-785
1.2.3. Habib Md. A., Sarker A. K. and Tabata M. , Interaction of DNA with H2TMPyP4+: Probable Lead Compounds for African Sleeping Sickness., Bangladesh Pharmaceutical Journal, 17, 2014, 79-85
1.2.4. Camargo C. R., da Conceição Amaro Martins V., de Guzzi Plepis A. M. and Perussi J. R., Photoinactivation of Gram-Negative Bacteria in Circulating Water using Chitosan Membranes Containing Porphyrin, Biological and Chemical Research, Vol.1, Issue 2, 2014, 67-75
1.2.5. Diddens-Tschoeke H.C., Hüttmann G., Gruber A.D., Pottier R.H. and Hanken H., Localized thermal tumor destruction using dye-enhanced photothermal tumor therapy., Laser Surg. Med., 47, 2015, 452-461
1.2.6. Dastgheyb, S.S., Toorkey, C.B., Shapiro, I.M. and Hickok, N.J., Porphyrin-adsorbed allograft bone: a photoactive, antibiofilm surface., Clin. Orthopaed. Rel. Res., 473, 2015, 2865-2873
2. Brennstoffzellen
2.1. Bogdanoff P., Herrmann I., Hilgendorff M., Dorbandt I., Fiechter S. and Tributsch H., Probing Structural Effects of Pyrolysed CoTMPP-based Electrocatalysts for Oxygen Reduction via New Preparation Strategies., J. New. Mat. Electrochem. Systems, 7, 2004, 85-92
2.2. Bang J. H., Han K., Skrabalak S. E., Kim H., Suslick K. S., Porous Carbon Supports Prepared by Ultrasonic Spray Pyrolysis for Direct Methanol Fuel Cell Electrodes., J. Phys. Chem. C,, 111, 2007, 10959-1096
3. Sensoren
3.1. NO-Sensoren
3.1.1. Malinski, T.; Taha, Z., Nitric oxide release from a single cell measured in situ by a porphyrinic based microsensor., Nature, 358, 1992, 676-678
3.1.2. Bedioui, F.; Trevin, S.; Albin, V.; Villegas, M.G.G.; Devynck, J., Design and characterization of chemically modified electrodes with iron(III) porphyrinic-based polymers: Study of their reactivity toward nitrites and nitric oxide in aqueous solution., Anal. Chim. Acta, 341, 1997, 177-185
3.1.3. Diab, N.; Schuhmann, W., Electropolymerized manganese porphyrin/polypyrrole films as catalytic surfaces for the oxidation of nitric oxide., Electrochim. Acta, 47, 2001, 265-273
3.2. Sauerstoffsensoren
3.2.1. Sinaasappel M. and Ince C., Calibration of Pd-porphyrin phosphorescence for oxygen concentration measurements in vivo., J. Appl. Physiol., 81, 1996, 2297-2303
3.2.2. Lo L. W., Koch C. J., Wilson D. F., Calibration of Oxygen-Dependent Quenching of the Phosphorescence of Pd-meso-tetra (4-Carboxyphenyl) Porphine: A Phosphor with General Application for Measuring Oxygen Concentration in Biological Systems., Anal. Biochem., Volume 236, Issue 1, 1996, 153-160
3.2.3. Sinaasappel M., Ince C., Calibration of Pd-porphyrin phosphorescence for oxygen concentration measurements in vivo., J. Appl. Physiol., Vol. 81, No. 5, 1996, 2297-2303
3.2.4. Lee S.-K. and Okura I., Optical Sensor for Oxygen Using a Porphyrin-doped Sol-Gel Glass., Analyst, 122, 1997, 81-84
3.2.5. Soumya Mitra S. and Foster T. H., Photochemical Oxygen Consumption Sensitized by a Porphyrin Phosphorescent Probe in Two Model Systems., Biophys. J., 78, 2000, 2597-2605
3.2.6. Mik E. G., van Leeuwen T. G., Raat N. J. and Ince C., Quantitative determination of localized tissue oxygen concentration in vivo by two-photon excitation phosphorescence lifetime measurements., J. Appl. Physiol., 97, 2004, 1962-1969
3.2.7. Stepinac T. K., Chamot S. R., Rungger-Brändle E., Ferrez P., Munoz J.-L., van den Bergh H., Riva C. E., Pournaras C. J. and Wagnieres G. A., Light-Induced Retinal Vascular Damage by Pd-porphyrin Luminescent Oxygen Probes., IOVS, Volume 46, Issue 3, 2005, 956-966
3.2.8. Koren K., Borisov S. and Klimant I., Stable optical oxygen sensing materials based on click-coupling of fluorinated platinum (II) and palladium (II) porphyrins-a convenient way to eliminate dye migration and leaching., Sensors and Actuators B, 169, 2012, 173-181
3.2.9. Huang H., Song W., Chen G., Reynard J. M, Ohulchanskyy T. Y, Prasad P. N, Bright F. V and Lovell J. F, Hydrogels: Pd-Porphyrin-Cross-Linked Implantable Hydrogels with Oxygen-Responsive Phosphorescence., Adv. Healthcare Mater., Volume 3, Issue 6, 2014, 891–896
3.3. Künstliche Nasen
3.3.1. Filippini D., Alimelli A., Di Natale C., Paolesse R., D’Amico A., Lundström I., Chemical sensing with familiar devices., Angewandte Chemie Int. Ed., 45, 2006, 3800-3803
3.3.2. Suslick K. S., Bailey D. P., Ingison C. K., Janzen M., Kosal M. A., McNamara III W. B., Rakow N. A.; Sen A., Weaver J. J., Wilson J. B., Zhang C. and Nakagaki S., Seeing Smells: Development Of An Optoelectronic Nose., Quimica Nova, 30, 2007, 677-681
3.4. Drucksensitive Farben
3.4.1. Zelelow B., Khalil G.E., Phelan G., Carlson B., Gouterman M., Callis J.B. and Dalton L.R., Dual luminophor pressure sensitive paint II. Lifetime based measurement of pressure and temperature., Sensors and Actuators, 96, 2003, 304–314
3.4.2. Ruyten W., Oxygen Quenching of PtTFPP in FIB Polymer: A Sequential Process?, Chemical Physics Letters, Vol. 394, 2004, 101-104
3.4.3. Grenoble S., Gouterman M., Khalil G., Callis J., Dalton L., Pressure-sensitive paint (PSP): concentration quenching of platinum and magnesium porphyrin dyes in polymeric films., Journal of Luminescence, Volume 113, Issues 1-2, 2005, 33-44
3.5. Ionenselektive Elektroden
3.5.1. Gupta V. K. and Agarval S., PVC Based 5,10,15,20-Tetrakis (4-methoxyphenyl) Porphyrinatocobalt (II) Membrane Potentiometric Sensor for Arsenite., Talanta, 65, 2005, 730-734
3.5.2. Vlascici D., Fagadar-Cosma E. and Bizerea-Spiridon O., A New Composition for Co(II)-porphyrin-based Membranes Used in Thiocyanate-selective Electrodes., sensors, 6, 2006, 892-900
3.5.3. LONG LiPing, YOU MingXu, WANG Hao, WANG YongXiang and YANG RongHua, A fluorescent sensing membrane for iodine based on intramolecular excitation energy transfer of anthryl appended porphyrin, Sci China Ser B-Chem , Volume 52, No 6, 2009, 793-801
3.5.4. Mitchell-Koch J. T., Pietrzak M., Malinowska E. and Meyerhoff M. E., Aluminum(III) Porphyrins as Ionophores for Fluoride Selective Polymeric Membrane Electrodes., Electroanalysis, 18, No 6, 2014, 551-557
3.6. Weitere Anwendungen in der Analytischen Chemie
3.6.1. Biesaga M., Pyrzynska K. and Trojanowicz M., Porphyrins in analytical chemistry. A review., Talenta, 51, 2000, 209-224
3.6.2. Hu Q., Yang G, Yin J and Yao Y., Determination of trace lead, cadmium and mercury by on-line column enrichment followed by RP-HPLC as metal-tetra-(4-bromophenyl)-porphyrin chelates., Talenta, Volume 57, Issue 4, 2002, 551-556
3.6.3. Igarashia S., Manakaa A., Terunumaa M. and Kanekia M., Spectrophotometric Determination of Lead(II) Ion by 96-Well Microplate Electrostatically Immobilized Porphyrin., Analytical Letters, Volume 36, Issue 11, 2003, 2393-2399
3.6.4. Latt K. K., Takahashi Y., Fabrication and characterization of a ?,?,?,?-Tetrakis(1-methylpyridinium-4-yl)porphine/silica nanocomposite thin-layer membrane for detection of ppb-level heavy metal ions., Analytica Chimica Acta, 689, 2011, 103-109
3.6.5. Moghimi A., Abdouss M., Ghooshchi G., Preconcentration of Pb(II) by Graphene Oxide with Covalently Linked Porphyrin Adsorbed on Surfactant Coated C18 before Determination by FAAS., Int. J. Bio-Inorg. Hybd. Nanomat., Volume 2, Issue 2, 2013, 355-264
3.6.6. De Souza C., Zrig S., Wang D., Pham M. C. and Piro B., Electrocatalytic miRNA Detection Using Cobalt Porphyrin-Modified Reduced Graphene Oxide., Sensors, 14, 2014, 9984-9994
3.6.7. Creanga I., Palade A., Lascu A, Birdeanu G., Fagadar-Cosma G. and Fagadar-Cosma E., Manganese(III) Porphyrin Sensitiv to H2O2 Detection., Dig. J. Nanomater. Bios., Vol. 10, No. 1, 2015, 315-321
3.6.8. Zamadar M., Orr C. and Uherek M., Water Soluble Cationic Porphyrin Sensor for Detection of Hg2+, Pd2+, Cd2+ and Cu2+, J. Sensors, , 2016,
4. Katalysatoren
4.1. Katalysatoren für Epoxidation
4.1.1. Suslick K. S.and Cook B. R., Regioselective Epoxidations of Dienes with Manganese(III) Porphyrin Catalysts, J. Chem. Soc., Chem. Commun., , 1987, 200-202
4.1.2. Li Z. and Xia C. G., Epoxidation of olefins catalyzed by manganese(III) porphyrin in a room temperature ionic liquid., Tetrahedron Letters, Volume 44, Issue 10, 2003, 2069-2071
4.2. Biomimetische Katalysatoren
4.2.1. Maid H., Böhm P., Huber S. M., Bauer W., Hummel W., Jux N., Gröger H., Iron Catalysis for In Situ Regeneration of Oxidized Cofactors by Activation and Reduction of Molecular Oxygen: A Synthetic Metalloporphyrin as a Biomimetic NAD(P)H-Oxidase., Angew. Chem. Int. Ed., 50, 2011, 2397-2400
4.2.2. Böhm P. and Gröger H., Iron(III)-porphyrin Complex FeTSPP: A Versatile Water-soluble Catalyst for Oxidations in Organic Syntheses, Biorenewables Degradation and Environmental Applications., ChemCatChem, 7, 2015, 22-28
4.3. Weitere Katalysatoren
4.3.1. Firouzabadi H., Khayat Z., Sardarian A. R., Tangestaninejad S., Metalloporhirins Catalyze regio and chemoselective Silylation of Hydroxy Groups with Hexamethyldisilazane (HMDS), Iran. J. Chem. & Chem. Eng., Vol. 15, No 2, 1996, 54-56
4.3.2. A. Nijamudheen , Deepthi Jose and Ayan Datta, Why Does Gold(III) Porphyrin Act as a Selective Catalyst in the Cycloisomerization of Allenones?, J. Phys. Chem, 115, 2010, 2187-2195
4.3.3. Kaur P., Hupp J. T. and Nguyen S. T., Porous Organic Polymers in Catalysis: Opportunities and Challenges., ACS Catal., 1, 2011, 819–835
4.3.4. Han A., Jia H., Ma H., Ye S., Wu H., Lei H., Han Y., Cao R. and Du P., Cobalt porphyrin electrode films for electrocatalytic water oxidation., Phys. Chem. Chem. Phys., Issue 23, 2014, 11224-11232
5. Wasseraufbereitung
5.1. Valduga G., Breda G. M., Giacometti G. M., Jori G., and Reddi E., Photosensitation of wild and mutant strains of Escherichia coli by meso-tetra(N-methyl-4-pyridyl)porphine. , Biochemical and Biophysical Research Communication, vol. 256, no 1, 1999, 84-88
5.2. Thandu M., Comuzzi C. and Goi D., Phototreatment of Water by Organic Photosensitizers and Comparison with Inorganic Semiconductors., International Journal of Photoenergy, , 2015, 1-22
6. Molekulare Elektronik
6.1. OLED's
6.1.1. Mark E. Thompson et al., Highly Efficient, Near-Infrared Electrophosphorescence from a Pt-Metalloporphyrin Complex, Angewandte Chemie International Edition, 46, 2007, 1109-1112
6.2. Solarzellen
6.2.1. Walter M. G., Wamser C.C., Ruwitch J. Zhao Y., Stevens M., Denman A., Pi R., Rudine A. and Pessiki P. J., Syntheses and optoelectronic properties of amino/carboxyphenylporphyrins for potential use in dye-sensitized TiO2 solar cells., J. Porphyrins Phthalocyanines, 11, 2007, 601-612
6.2.2. Walter M. G., Rudine A. and Wamser C.C, Porphyrins and phthalocyanines in solar photovoltaic cells., J. Porphyrins Phthalocyanines, 14, 2010, 759-792
6.2.3. Suzuki A., Nishimura K. and Oku T., Effects of Germanium Tetrabromide Addition to Zinc Tetraphenyl Porphyrin / Fullerene Bulk Heterojunction Solar Cells., Electronics, 3, 2014, 112-121
6.3. Sonstige Molekulare Elektronik
6.3.1. Baek E., Pregl S., Shaygan M., Römhildt L., Weber W. M., Mikolajick T., Ryndyk D. A., Baraban L. and Cuniberti G., Optoelectronic switching of nanowire-based hybrid organic/oxide/semiconductor field-effect transistors., Nano Res., Volume 8, Issue 4, 2014, 1229-1240
6.3.2. Day N. U., Walter M. G., and Wamser C. C., Preparations and Electrochemical Characterizations of Conductive Porphyrin Polymers, J. Phys. Chem. C, 119, 2015, 17378-17388